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FIBONACCI-TYPE 1D AND 2D WORDS
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ABSTRACT. Constructing new word sequences with distinctive proper-
ties will help us understand infinite words further. In this paper, we
study a variant of the one-dimensional (1D) infinite Fibonacci word and
thus exhibit the possible generations of new aperiodic infinite words with
varying characteristics. We also explore ways of constructing Fibonacci-
type two-dimensional (2D) aperiodic words using continued fractions
and Beatty sequences.
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1. INTRODUCTION

The study of properties like factor complexity, periodicity, and regularity
of infinite words (infinite sequence of characters from some alphabet) is cen-
tral to combinatorics on words [1]. Combinatorics on words has diversified
applications in algorithms related to pattern recognition, text compression,
image processing, and DNA computing [2]. The influential work of Axel
Thue on repetitions in words (which resulted in the well-known Thue-Morse
word) is worth mentioning here. Other noteworthy infinite words are Stur-
mian, Arnoux—Rauzy, Kolakoski-Oldenburger and Rudin—Shapiro words [3].

Factor complexity of an infinite word w, denoted by py,(n), n > 1, is the
number of subwords of length n occurring in w. Analysis of factor complexity
is significant in understanding the structure of the word.

Another important feature of an infinite word is, periodicity. It is in-
teresting to note that, words that are not periodic (i.e. aperiodic words)
influence the design of crystals, tilings and pseudo-random sequences [4, 5].

For aperiodic words, we have, p,,(n) > n+1 [6]. Notably, Sturmian words
have the minimum factor complexity (i.e. p(n) = n + 1) among all infinite
aperiodic words [1]. Due to this distinctive property, Sturmian words are
studied more rigorously in order to generalize various properties of infinite
words. In particular, the one-dimensional infinite Fibonacci word is the
most sought-after Sturmian word due to its remarkable properties [7]. As
the name suggests, Fibonacci words are directly related to the Fibonacci
numerical sequence: F(0) = 1, F(1) = 1, F(n) = F(n — 1)+ F(n — 2)
for n > 2. As presented by Leonardo of Pisa in his book Liber Abaci [8],
these numbers are nothing but the number of rabbit pairs (which breed in
accordance with some hypothetical assumptions) present n months after we
started with a single pair. A two-dimensional (hereafter sometimes written
as 2D) extension of the Fibonacci words also was proposed in [9].
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Motivated by these interesting and useful properties of Sturmian words,
in this paper, we study a variant of the one-dimensional (hereafter some-
times written as 1D) infinite Fibonacci word. Also, in two dimensions,
we explore two ways of constructing Fibonacci-type 2D words, one using
continued fractions and the other using Beatty sequences. We understand
that, by systematically constructing new word sequences and studying their
structural properties, we can generalize many properties of infinite words.

2. PRELIMINARIES

2.1. Words in Formal Language Theory. In the theory of formal lan-
guages, we have Y, a finite set of symbols or letters, called an alphabet.
By juxtapositioning/concatenating the symbols of ¥ we obtain X*, the
free monoid generated by . The elements of ¥* are called words. The
empty word, denoted by A is the neutral element of ¥*. We also have
¥t = 3¥* —{A\}. If uis a word in ¥*, |u| denotes the length of u and
is the number of letters occurring in u. By definition, [A| = 0. For a
given word w € ¥*, u € X* is called a prefix (suffix, respectively) of w, if
w = wv (w = vu, respectively) for some v € ¥*. The reversal of a word
u=aiay---an, a; €L, 1 <i<n,is the word uf* = a,, - - aga;. If u=u®
then u is said to be a palindrome.

A power of a word is defined as the repeated concatenation of the word
with itself. That is, u™ is obtained by concatenating u with itself n number
of times. A word w is said to be primitive if w = u™ implies n = 1 and
w = u. By Q we denote the set of all primitive words over 3. To learn more
about formal language theory the reader can refer [1].

2.2. Fibonacci Words: The Familiar Setup. An analogous setup to
Fibonacci numbers is the set of Fibonacci words. For the alphabet ¥ =
{a, b}, the sequence {fy}n>0 defined recursively by fo = b, fi = a, fn =
fn—1fn—2 for n > 2 is called the Fibonacci words. More explicitly, fo =
b, f1 = a, fo = ab, f3 = aba, fy = abaab and so on. The set of all Fibonacci
words will constitute the Fibonacci language, Fyp. That is, Fup = |J fa-
n>0

Note that, in the above discussion, we can very well relate b to a baby
rabbit pair and a to an adult rabbit pair, so that the Fibonacci’s population
growth model of rabbit pairs is established through the symbols a and b.
Recall the hypothetical assumptions in the classical setup that (i) no rabbits
die (ii) A new baby pair becomes an adult pair one month after birth and
breeds a new baby pair every following month. That is, at the end of month
0 (initially), one rabbit pair (fo = b) is present. At the end of month 1,
the baby pair becomes an adult pair and hence one rabbit pair (f; = a)
is present. At the end of month 2, the adult pair breeds a baby pair and
hence two rabbit pairs (f2 = ab) are present, and so on. Note the interesting
relation, |f,| = F(n) for n > 0. Also, recall the explicit formula for F(n),
i.e., the solution of the Fibonacci recurrence relation, F'(0) = F(1) = 1,
Fn)=Fn—-1)+F(n—-2),n>2,

n+1 n+1
=g (5 (@) (%) e
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which gives the number of rabbit pairs at the end of any month ‘n’.

2.3. Lindenmayer (L) Systems. From Section 2.2, one can easily under-
stand the growth process as, “b becomes a” and “a becomes ab” that also
simultaneously. These type of languages arising out of parallel rewriting was
first studied by Aristid Lindenmayer while exploring the growth processes
of multi-cellular organisms [10]. We recall the formal definitions here.

Definition 2.1. [11] A finite substitution o over an alphabet ¥ is a mapping
of X* into the set of all finite nonempty languages (possibly over an alphabet
A different from X)) defined as follows. For each letter a € X3, o(a) is a finite
nonempty language, o(A\) = X and, for all words wi,ws € X*, o(wiws) =
o(wy)o(ws).

If none of the languages o(a),a € X, contains the empty word, the sub-
stitution o is referred to as A-free or non-erasing. If each o(a) consists of
a single word, o is called a morphism. Along these lines, the sequence of
Fibonacci words b, a, ab, aba, . .. can be obtained by iterating the Fibonacci
morphism o : ¥ — ¥* defined by o(b) = a,0(a) = ab, where ¥ = {a, b}.

A Lindenmayer system is now defined through a substitution o.

Definition 2.2. [11] A 0L system is a triple G = (3, 0,wq), where ¥ is an
alphabet, o is a finite substitution on X, and wg (referred to as the axiom,) is
a word over Y. The OL system is propagating or a POL system if o is non-
erasing. The OL system G generates the language L(G) = {wo} U o(wp) U
o(o(wo)) U+ = Ussgoi(wp). A OL system (,0,wo) is deterministic or a
DOL system iff o is a morphism.

The system generates the language in a specific order, wg, w1 = o(wp),
we = o2(wp), wy = o3(wpy) and so on. We will denote the sequence by
S(G). The infinite word li_1>n o™ (wp) = weo 1s called the fixed point of the

n oo

morphism o. Note that the Fibonacci language F' = {b, a, ab, aba, abaab, . . .}
(defined through the morphism o (b) = a,0(a) = ab,) is a DOL language [12].
In fact, by Definition 2.2, it is a PD0L language.

Let us state a few more related concepts.

Definition 2.3. [11] An infinite sequence of words w;,i > 0, is locally cate-
native iff, for some positive integers k, 1,42, ... ,ig, and ¢ > max (i1, ..., i),
Wp, = Wp—iy Wn—iy - - - Wn—i,, whenever n > q. A DOL system G is locally
catenative iff the sequence S(G) is locally catenative.

Locally catenative is a desirable property of DOL systems.

Definition 2.4. [11] For an infinite sequence of words, w;,i > 0, the func-
tion (from mon-negative integers to itself,) f(n) = |wy| is termed the growth
function of the sequence.

We have the following systematic way of finding the values of f(n) [10, 11].
For a DOL system (X, o, wp), suppose that the alphabet ¥ has k elements,
$1,89,...,8;. Let m be the Parikh vector of the axiom. That is, 7 is the
k-dimensional row vector such that, for i = 1,2,...,k, i*® component of 7
equals the number of occurrences of the letter s; in the axiom wqg. Let the
growth matrix M be the k-dimensional square matrix whose (i, )" entry,
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i,j € {1,2,...,k}, equals the number of occurrences of a;, in o(a;). Then,
the values of the growth function are obtained by f(n) = 7M"n, n > 0,
where 7 is the k-dimensional column vector with all components equal to 1.

In fact, M is the arithmetization of the morphism o and is sometimes
called as the matrix of the morphism. Note that, for i = 1,2, ..., k, the i*®
row of M is the Parikh vector of o(a;). Hence, the i row of M™ will be the
Parikh vector of 0™(a;) [3]. Hence, for an axiom wy = a;,¢ € {1,2,...,k},
the Parikh vector of o™ (wg) can be directly obtained from M™.

Another notion worth mentioning is recurrence systems. It is a formal
framework to overcome the ambiguity of the English language while de-
scribing a developmental language [10]. Also it is a nondeterministic gener-
alization of locally catenative DOL systems [12].

Definition 2.5. [10] A recurrence system is a 6-tuple S = (£,9Q,d, o, F,w),
where (1) X is a finite non-empty set of symbols (the alphabet), (2) Q = N*
(w is called the width of S) is a finite non-empty set (the index set), (3)
d is a positive integer (the depth of S), (4) < is a function, associating
with each (z,y) € Q x N? q finite set A, ,, (of avioms) such that Ay, C ¥,
(5) F is a function, associating with each x € Q a non-empty finite set F
(of recurrence formulas), such that Fy, C ((2 x NO)UX)*, (6) w € Q (the
distinguishable indez).

A recurrence system with width w and depth d is called a (w, d) recurrence
system. If A, , for all z,y has exactly one rule or empty then the recurrence
system will be deterministic. Languages generated by recurrence systems
are said to be recurrence languages. Locally catenative systems are nothing
but deterministic recurrence systems of width 1 [10, 11].

2.4. Two-dimensional Words. The concepts of formal language theory
can be extended to two dimensions [13]. A 2D word (otherwise called a
picture or array) is a rectangular arrangement of symbols taken from ¥.

Definition 2.6. [14] A 2D word u = [u;j]i1<i<m,1<j<n Of Size (m,n) over
3 is a finite 2D rectangular arrangement of letters from X, as shown below.

ui,1 ui,2 ce Ul,n—1 Ul,n
u2,1 u2,2 e U2,n—1 U2,n
w= . .
Um—-1,1 Um—12 °*° Um—-1n—-1 Um—1n
Um,1 Um,2 e Um,n—1 Um,n

The number of rows and columns of u are denoted by |u|row and |ueol,
respectively. The empty array, denoted by A is the array of size (0,0) and
the arrays of sizes (m,0),(0,m) for m > 0 are not defined. The set of all
arrays over ¥ including A, is denoted by ¥** and ¥ will denote the set of
all non-empty arrays over ¥.. Any subset of ¥** is called a picture language.

Given an array u, the set of coordinates {1,2, ..., [u|row } X{1,2, ..., |t|col}
constitute the domain of u. A subarray (subword or factor) of u is denoted by
u[(2,7), (¢, 5')] and is the portion of u located in the domain {i,i+1,...,4'} x
{.77.7 + 1a e 7j/}’ Where 1 S [ S i/ S |u|rOW7 1 S .7 S j/ S |u|C01'

Similar to the concatenation operation on ¥*, we have the column con-
catenation and the row concatenation operations on X**.
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Deﬁnition 2.7. [13] Let mi,ni1, Mo, N2 >0 and let u = [ui7j]1§i§m171§j§nl,
v = [Vijli<i<mai<j<n, be arrays (over ¥) of sizes (mi,n1) and (ma,ng),
respectively. Then the column concatenation of u and v, denoted by u @ v,
is a partial operation, defined only if my = mo = m. Similarly, the row
concatenation of u and v, denoted by u S v, is also a partial operation,
defined only if n1 = ne = n. They are defined as given below.

u1,1 toe Ul,n
uy,r o v U1,n,q S Vl,nq
. . . . Umy, 1 00 U
uQuv = : : : : L uSv = mi, mi,n.
V1,1 te Vin
Um,1 *° Ummy Umadl - Umpmng
Uma, 1 " Uma,n

The column,row concatenations of u and the empty array A are always de-
fined and A is a neutral element for both the operations.

For a u € ¥** an array v € ¥** is said to be a prefix of u (suffix of u,
respectively), if u = (v© z) Oy (u = y © (x © v), respectively) for some
z,y € X%, If x € ¥, then by (zF19)*2© we mean the array constructed
by repeating x, k1 times column-wise to get z*'® and then repeating z*1?,
ko times row-wise. An array w € 77T is said to be 2D primitive if w =
(xF10)k2S implies that kiko = 1 and w = z.

2.5. Two-dimensional Fibonacci Words. The extension of 1D Fibonacci
words to Fibonacci arrays is defined as below.

Definition 2.8. [9] Let ¥ = {a,b,c,d}. The sequence of Fibonacci arrays,
{fmn} where m,n >0, is defined as:

(1) foo =8, o1 =", 10=20,fi1 =« where a, 5,7 and § are symbols

from X with some but not all, among a, B, and § might be identical.

(2) Fork > O,m,n > 17 fk',n+l = fk',n®fk,n—1» fm+1,k = fm,k@fm—l,k-

In this paper, we fix foo = a,fo1 = b, fio = ¢, fi1 = d and we call
frnt1 = fren © frn—1 as column-wise expansion and fri1,6 = fink © fr—1,k
as row-wise expansion. In Example 2.9 we construct fao in both ways.

Example 2.9. By applying row-wise expansion first, and then column-wise
expansion, we have, fo2 = f126 fo2 = (fi,1 © f1,0) © (fo1 © fop)-

By applying column-wise expansion first, and then row-wise expansion,
we will have, fao = f21 O f20 = (f1,1© fo,1) O (f1,0 © fo,0)-
Since, foo = a, foq =0, fi0 =c, i1 = d, we can write, foo = Z 2.

For a more detailed study on Fibonacci arrays [14] or [15] can be referred.

3. NEw APERIODIC 1D WORDS

In this section we present the generation of a new aperiodic 1D infinite
word. Unlike the classical Fibonacci rabbit population growth model, in
this variant, an adult pair produces ‘r’ baby pairs, every month. Note that
in the familiar (classical) setup, » = 1. We have the corresponding DOL
system as: G = (%, 0, fo), where,
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¥ ={a,b},

TABLE 1. Growth of rabbit population when r baby pairs are bred

oc:b—a,a—ab,

Sivasankar M and Rama R

fo =0

End of | Rabbit Pairs Number of
Month n Present Rabbit Pairs
n=>0 b 1
n=1 a 1
n=2 ab” r+1
n=23 ab"a” 2r+1
n=4 ab”a’" (ab™)" 2r2 +3r +1

TABLE 1 gives a glimpse of the population growth. The system is a
deterministic (1, 2) recurrence system and is locally catenative. It is easy to
form the recurrence relation for this sequence of words as:

fo=0b,fi =a,and for n > 2, fr, = fn_1(fn-2)"
The formal way of finding the recurrence relation is as below.
U_n(b) _ O_nfl(a) _ 0_n72(abr) _ 0”72(0/) O_n72(br)
=g 2 (o(b)) (0"72(1)))7‘ = 0”71(1)) (0"72 (b))r

and hence f, = fr_1(fn—2)".
Now, the recurrence relation for the growth function, f(n) = | f,| will be,
f(0)=1,f(1)=1, and for n > 2, f(n) = f(n — 1) +rf(n—2).

Solving the recurrence relation, we get, for n > 0,

)= L (1+\/1+4r>”+1_ 1 (1—\/1+4r)"“
YV Trar 2 JItdr 2 '

Since the system is a locally catenative DOL system, the growth function
can also be given by,

10

Further, as the axiom is wg = b, the second row of M™ will give | fy|q, the
number of @’s in | fy|, and | fy|p, the number of b’s in | f,|. It is obvious that
[ fula + [fnls = f(n).

Now, let us state and prove a few properties of the Fibonacci language
associated with this variant. We have the language associated with this
variant as Fg)'bbabies ={fo, f1, f2,.-.} ={b,a,ab",ab"a",ab"a" (ab")", .. .}.

F(n) = 7M™, 1> 0, where 7= (01), M = (1 > =17

Example 3.1. When r = 3 we have,
fo=0b, fi=a, fo=ab®=abbb, f3=ab’a® = abbbaaa
f1 = ab3a®(ab®)® = abbbaaaabbbabbbabbb
f5 = ab®a®(ab®)3(ab®a®)® = abbbaaaabbbabbbabbbabbbaaaabbbaaaabbbaaa

First let us analyse the primitive nature of F, 'bb”bies. ‘We need the following
theorems.

Theorem 3.2. [16] If p,q € Q, then p'q’ € Q for all i,j > 2.
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Theorem 3.3. [17] If u = ujus # € and v = uguq, then u is primitive if
and only if u' is primitive.

Theorem 3.4. The language Fg)'bb“bies 1s primitive. That is each word in
the language is primitive.

Proof. Clearly, fo, fi1, fo are primitive. For n > 3, we have f, = fo—1f,_o =
fa—ofr_sfr 5. Consider fi = frt1fr . a conjugate of f,. As f,_ o and
fn—3 are primitive, by Theorem 3.2, f! is primitive. Hence, by Theorem 3.3,
fn is primitive . O

As F g"bb“bies is primitive, we analyse the quasiperiodic nature of the fixed
point of the morphism o. Note that, the fixed point of ¢ is the infinite word,
f;;babies — abrar(abr)r(abrar)r s =ab"a" T abTab” - aba" T -

We recall the concept of quasiperiodicity from [18]. We say that a string
w covers another string z if every position of z is covered by some occurrence
of win z. If z is covered by w # z, we say that z is quasiperiodic and w
is called a quasiperiod of z. A string z which is not quasiperiodic is called
superprimitive.

Theorem 3.5. fI0%%€s js superprimitive.

Proof. We observe that ‘b" always occurs in 7* power in f7;b%s  gand-

wiched between powers of ‘a’. The four type of patterns that occur in
f(;;babies are, ab”a” 10", "0 ab”, ab"ab” and a"t1oTa" Y. Since ab"a” !
is a prefix of f7:ba%€s the possible choices for a quasiperiod g of f;babies
are ab”,ab"a,ab"a" 1. Note that ab” and ab’a are obviously ruled out and
the other choice ¢ = ab"a" ! cannot cover segments of the pattern ab”ab’.
Hence f7:babs i superprimitive. O

Recall that, for n € N, p,,(n), the factor (or subword) complexity of a word
w, counts the number of subwords of length n occurring in w. It is a measure
that analyses the amount of randomness present in w and hence helps us
understand the structure of w. It is proved that the factor complexity of
periodic words is bounded and for aperiodic words p(n) > n + 1 [6].

Let us now, investigate the factor complexity of f7:*2%€s  Recall that a
factor u of length n of an infinite word over a binary alphabet {a, b} is right
special if both ua and ub are factors of the infinite word.

Theorem 3.6. Let p(n) be the complexity function of fi;b%s. Then, for
n > r+ 1 the first finite differences of p(n) (i.e., p(n+ 1) — p(n)) is 1.

Proof. As noted in the proof of Theorem 3.5, ‘b’ always occur in r** power
in fr-babies = Also, ‘a’ occurs either in its first power or in its (r 4+ 1)** power.
So, for n > r 41, a subword of f7:%%%5 of length n will be right special only
if it ends with ‘ba’. This is because, in any subword of f7;%®%s b’ has to
complete a run of length r and so, to the right of a subword ending with ‘b’
we can affix either ‘a’ or ‘0’ and not both. Similarly, to the right of a subword
ending with aa we can affix either ‘a’ or ‘0’ and not both. So, the subword

ending with ba only will be right special and hence p(n+1) =p(n)+1. O
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4. NEw APERIODIC 2D WORDS USING CONTINUED FRACTIONS
First let us recall the required definitions.

Definition 4.1. [19] A finite continued fraction is an expression of the form

N 1
a+ ——————— 1
1
a1+ az+
e
which we abbreviate as [ao; a1, .. .,an]. The continued fraction is called sim-

ple, if the a;’s are integers such that a; > 1 for 1 <i <mn.

In the continued fraction, ag is called the integer part and ay,...,a, are
called the partial quotients. The value of a simple continued fraction is
rational if and only if the continued fraction is finite. If a,1¢+ = a, for all

n > N, we write [ag; a1, az,...] = [ao;a1,...,aN,GN+1, GN+2, - -, GN+¢] and
say the continued fraction is ultimately periodic. For examples, we have
12 —10;5,2,2,2], V23 = [4;1,3,1,8,1,3,1,8,...] = [4;1,3,1,8].

Theorem 4.2. [19] The partial quotients in the continued fraction expansion
for real o are ultimately periodic if and only if « is an irrational number
that satisfies a quadratic equation with integer coefficients.

The following definition (Definition 4.3) is one among the various equiv-
alent definitions of 1D Sturmian words and has motivated us to construct
Fibonacci-type 2D words using continued fractions.

Definition 4.3. [20] Given the continued fraction [0;a1+1, a2, as,...] of an
irrational o € (0,1), define the sequence of words (Sp)n>—1 by

s_1=1, 50=0, s = 5" 18p—2, n > 1.

This sequence of words is called the standard sequence of o. The infinite

word co, = lim s, is called the characteristic word of .
n—o0

4.1. Two-dimensional Characteristic Words. A class of 2D words (over
a three-letter alphabet) obtained by coding discrete planes was studied by
Arnoux [21] and Vuillon [22]. Prior to this, Cassaigne characterized 2D
words with rectangle complexity mn + 1 [23].

In the following, we construct aperiodic Fibonacci-type 2D words (or, say
in general, Sturmian-type 2D words) using the continued fraction expansions
of two irrational numbers a1, ag € (0,1).

Definition 4.4. Let the continued fraction expansions of the irrationals
aq,ag € (0,1) be [0;dy + 1,da,ds,...] and [0;e1 + 1,ea,€3,...], respectively.
Define a sequence of 2D words {Smptmn>—1 recursively as follows.

With s_1,-1 =a, s_10=0b, so,-1 = ¢, 80,0 =d, fork > -1 and m,n > 1,

_ dm© _ en®
(1) Sm,k = 37-,;’:17]9 © Sm—2k, Skn = sktln,l O Skn—2-

Then the sequence {Sm.n tmn>—1 is called the 2D standard sequence of (a1, o)

over the alphabet ¥ = {a,b,c,d}. Since a1,z are irrationals,

lim lm s, 5, = Coy a0
m—00 N—00

is an infinite 2D word and is called the characteristic word of (aq, az9).
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The following example illustrates Definition 4.4 by generating a finite 2D
word.

Example 4.5. For a; = % and ag = \/%, we have,

1 S 1
— =[0;2,1,1,1,4] and — = [0;3, 3, 6].
VT | ] V11 [ ]

Let us find sz 2 by taking m = 3,n = 2. Using (1), we have,

_ Jde _ 15 1
532 = S35 O Ss12 = (8172 ) 8072) o 51,2

s

= (539 © $1,0)'° © (53 © 500))'° © (77 D s10).

Let s_1_1 = a, s_190 =10, so,-1 = ¢, sop0 = d. Using (1), we get the
d d d
words so1, s1,0 and s1,1 as so1 = d d ¢, S19 = b and s11 = b b 2.

Therefore,

ddcddcddcd
bbabdbbdbadbdbdald
s320=d d ¢ d d ¢c d d c d.
d dcddcddcd
bbabdbdbdbadbdalylbd

Recall that the limiting case (m,n — oo0) will produce the infinite 2D

word. It is to be noted that to obtain the limiting case of the sequence
{S$m.n}, we have to analyse the pattern governing the finite words of the
sequence. For this the periodicity of the continued fraction expressions can
be used.

Remark 4.6. The standard sequence can be alternately defined using a mor-
phism ¢, similar to the discussion in [24]. But depending on the partial quo-
tients of a1 and ag, the size of the images ¢(a), p(b), ¢(c), #(d) may become
large, making the work tiresome.

Remark 4.7. The 2D Fibonacci word is the characteristic word of (o ,0) =

(é, %), where ¢ is the golden ratio.

We end the section by validating the construction given in Definition 4.4.

Theorem 4.8. The 2D infinite word cq, ., constructed in Definition 4.4,
is aperiodic.

Proof. Suppose that cq, «, is periodic. Then the periodic nature might have
occurred in any one of the two directions or in both. Assume that it has
occurred along the direction of the columns, i.e., ‘left to right’. That is

Car,an = leH;o uF® for some u € £**. But from (1) (by doing column-wise

expansion first), it is clear that each row of s,,, and hence each row of
Cap,a0 18 @ 1D Sturmian word and are aperiodic. This is a contradiction to
the assumption that c,, , exhibits periodic nature along the direction of
the columns. Hence, $,,, and thus cq, q, is aperiodic. The arguments of
the proofs in the other cases where periodicity occurs along the direction of
rows (i.e., ‘top to bottom’) or along both directions are similar. d
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5. NEW APERIODIC 2D WORDS USING BEATTY SEQUENCES

In this section we give another insight into the construction of aperiodic
infinite 2D words using Beatty sequences. This can be considered as an
alternative way to the construction discussed in Section 4.

First, let us recall some basics of Beatty sequences.

Definition 5.1. [25] A Beatty sequence is a set B = {|rn| : n > 1} for
some irrational number, r > 1. Two Beatty sequences B and B’ are com-
plementary if B and B’ form a partition of N = {1,2,3,...}.

Lemma 5.2. [25] The Beatty sequences B = {|rn] : n > 1} and B’ =
{lr'n) :n > 1} are complementary iff 1 + 5 =1.

Given below is an example of complementary Beatty Sequences.

Example 5.3. Let r = /3 and ' = % Then, we get the Beatly se-
quences B = {1,3,5,6,8,10...} for r, and B’ = {2,4,7,9,11,...} for '
As %—l— % =1, B and B’ are complementary. We say, B and B’ are the
complementary Beatty sequences generated by .

Let B and B’ be the complementary Beatty sequences generated by r =
1+2\/5’ the golden ratio. Then, we know that, in the infinite Fibonacci word
foo = abaababa - - -, the i*" letter will be a, if i € B and b, if i € B’ [7].
Further, if we wish to construct the n® Fibonacci word f,,, we can consider
the construction of the prefix of length F(n) of fo. Hence, to construct f,
directly from B and B’, we consider the subsets Bs and B/ respectively of
B and B’ such that By and BJ form a partition of {1,2,..., F(n)}. Then,
the it" letter of fn will be @, if i € Bs and b, if i € B.. Note that different
values of r generate different Sturmian words.

A natural extension of the aforementioned construction of 1D Fibonacci
words (Sturmian words, in general) to two dimensions is considered in the
following by taking a pair of complementary Beatty sequences.

Theorem 5.4. Let 71,79 > 0 be two irrational numbers. Let B and B’
be the complementary Beatty sequences generated by ri. Let C and C' be
the complementary Beatty sequences generated by ro. Let 3 be an alphabet
and let fo,0, fo1, fi,0, fi,1 € X with all of them different. Then, the 2D word
Wes oo With its

fii,  if(ij) e BxC

fi0, if (i.j) € Bx '

fO,lv Zf (i’j)eB/XC

f(),o, Zf (’i, ) e B xC'

(i, 5)™" entry =

will be aperiodic.

Proof. Since r1 and 79 are irrational, the infinite words present in each row
and in each column of wgé’g are 1D Sturmian words and are aperiodic. This

can be understood by observing that every row is generated through the
complementary Beatty sequences C' and C’ and every column is generated
through the complementary Beatty sequences B and B’ . Since, every row

and every column of wy'es are aperiodic, weg oo itself is aperiodic. O



Fibonacci-type 10D and 2D words

For an easier understanding, let us construct a 2D finite word of size (4,4)
using the Beatty sequences of v/3 and v/2. Note that, when we consider finite
subsets of B, B', C, (", we get finite subwords of the infinite word woses, and
when we consider all of B, B/, C,C’, we get the infinite word wae.
Example 5.5. For r1 = /3, we get the complementary Beatty sequences
B ={1,3,5,6,8,10,...} and B' = {2,4,7,9,11,14,...}. For ry = \/2, we
get the complementary Beatty sequences C = {1,2,4,5,7,...} and C' =
{3,6,10,13,17,...}. Let us construct a finite 2D word of size (4,4) using
the subsets, By = {1,3} ¢ B, B, = {2,4} ¢ B', C; = {1,2,4} C C ,
ClL = {3} C C'". Note that as we are constructing a 2D word of size (4,4),
we have selected B, B, Cs, C, such that |Bs U Bl| =4 and |Cs U CY| = 4.

Now, the required Cartesian products are,

B, xCs ={(1,1),(1,2),(1,4),(3,1),(3,2),(3,4)}, BsxC.=1{(1,3),(3,3)},
BixCy = {(2,1), (2,2),(2,4), (4.1), (4,2), (4,00}, BIxCl={(2,3),(4,3)}.
Let ¥ = {a,b,c,d} and fix foo = a, fo1 = b, f10 = ¢, fi1 = d. Then by
Theorem 5.4, we get the entries of w as below.

fir fir fio fin

w—|fo1 Jor Joo for|_
fir fir fio fia

fo1r fo1 foo fou

S QoK
QoA
Q@ 0 8 0o
QS A

Remark 5.6. If we take both r1,ry as the golden ratio 1+2‘/5 = r(say), then

wg’.f:oo will be the 2D infinite Fibonacci word.

Example 5.7 exhibits the construction of a 2D finite Fibonacci word.

Example 5.7. Let us construct foz. As F(4) = 5, F(3) = 3, we take,
Bs; ={1,3,4} , B, ={2,5} , Cs ={1,3} , CL = {2} to get the following.
By x Cy = {(1,1),(1,3),(3,1),(3,3), (4,1), (4,3)},
B, x O = {(1,2),(3.2), (1.2)}, B, x Cy = {(2,1),(2,3), (5.1, (5,3)},
B x Cl = {(2,2).(5,2)}.

Letting foo = a, foq =0, fio =c¢, fi1 =d, by Theorem 5.4, we get,

fir fio fia d ¢ d
fo1 foo for b a
faz=|fix fio fHi|=|d ¢ d]l.
fir fio fia d ¢ d
fo1 foo for b a b

6. CONCLUSIONS

In this paper we have generated and examined a new 1D aperiodic in-
finite word by varying an assumption in the classical rabbit growth model
of Fibonacci. Further, using continued fraction expansions and Beatty se-
quences we have discussed ways of generating new 2D aperiodic words which
are similar to 2D Fibonacci/Sturmian words. Future direction might be to-
wards studying further variants of the 1D /2D infinite Fibonacci word so as
to generate few more new 1D /2D aperiodic infinite words.
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